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Abstract. We derive an explicit expression for the eigenfunctions and the corresponding
eigenvalues of the operator [q1/4J+(q) + q−1/4J−(q)]qJ3(q)/2 in an arbitrary irreducible
representation of the algebra suq(2). The general form of the intertwining operatorAJ (q), which is
a q-extension of the classical su(2)-operator aJ , J1a

J = aJ J3, is also found. The matrix elements
of AJ (q) are expressed in terms of the dual q-Kravchuk polynomials.

1. Introduction

The purpose of this paper is to introduce and study a ‘nonstandard’ basis for the irreducible
representations of the quantum group suq(2). A ‘standard’ basis was introduced and studied
elsewhere [1–4].

Let us first of all explain the meaning of the words ‘standard’ and ‘nonstandard’ in the above
paragraph. For a Lie algebra L, or Lie group G, we obtain a ‘standard’ basis by taking a chain
of subalgebras L ⊃ L1 ⊃ L2 ⊃ · · · ⊃ LN and writing down the Casimir operators of all the
algebras in the chain. The basis functions are then constructed as simultaneous eigenfunctions
of all these Casimir operators (and possibly some further commuting operators). For the Lie
algebra su(2) with basis J1, J2, and J3, there is, up to the equivalence, just one standard, or
canonical, basis, corresponding to the subgroup chain SU(2) ⊃ U(1). The basis functions are
eigenfunctions of J 2 = J 2

1 + J 2
2 + J 2

3 and J3, i.e.

J 2ψJm = J (J + 1)ψJm J3ψJm = mψJm (1.1)

where J = 0, 1
2 , 1, 3

2 , . . . ,−J � m � J. These functions can be realized as monomials zJ+m,
or as spherical harmonics YJ,m(θ, φ) on the sphere S2 [5].

Nonstandard bases for Lie groups and Lie algebras can be obtained by diagonalizing other
complete sets of commuting operators. For su(2) nothing new is obtained by replacing J3 by
a general element aJ1 + bJ2 + cJ3 of the Lie algebra. New, nonstandard, bases are obtained
by diagonalizing higher-order polynomials in the enveloping algebra of su(2). For instance,
any second-order operator aikJiJk can be rotated into a1J

2
1 + a2J

2
2 + a3J

2
3 . If we take common

eigenfunctions of the operators Q and J 2, i.e.

QψJk = kψJk J 2ψJk = J (J + 1)ψJk

Q = J 2
1 + pJ 2

2 0 < p < 1
(1.2)
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we obtain a new basis. When realized on the sphere S2, the basis functions are products of
Lamé polynomials. They can be obtained by separating variables in the Laplace equation on
the sphere S2 in elliptic coordinates [6].

The motivation for studying different bases for representations of Lie groups and Lie
algebras is multifold. A mathematical motivation arises, for instance, from the theory of
special functions and in particular orthogonal polynomials [7, 8]. Indeed, different bases for
the same representations of the Lie group lead to different special functions and provide a
group theoretical underpinning for all of these functions.

A complementary motivation for studying different bases comes from physics. In
particular, consider the group SU(2), or equivalently O(3). The nonstandard basis (1.2)
corresponds to the subgroup chain O(3) ⊃ D2, where D2 is the dihedral group, generated by
rotations through π about each of the coordinate axes in the euclidean space E3. This group–
subgroup chain and the corresponding basis functions occur in atomic, nuclear and molecular
physics, because of their relation to asymmetric tops [9]. More generally, nonstandard bases of
O(3) occur in molecular physics and quantum chemistry as ‘symmetry adapted wave functions’
[10]. They correspond to subgroup chains O(3) ⊃ ", where " is a discrete (finite) subgroup
of O(3).

Now let us turn to the case of quantum algebras, in particular, suq(2). The quantum algebra
may have an ordinary Lie subalgebra L (or chain of subalgebras). This subalgebra can then be
used to introduce a ‘standard’, or ‘canonical’ basis for the considered quantum algebra. This
has been done for suq(2), using the chain suq(2) ⊃ u(1) [1–4]. In particular, basis functions
of suq(2) were realized on an ordinary sphere S2 as eigenfunctions of the operator J3(q) (a
differential operator) and of the Casimir operator of suq(2) (a differential–difference operator).
These basis functions were expressed in terms of q-Jacobi and q-Legendre polynomials [4].

For quantum algebras the distinction between the ‘algebra’ and an enveloping algebra
is much less rigid than for Lie algebras. Moreover, it is certainly not true that any linear
combination of the suq(2) elements J3(q), J+(q) and J−(q) (see below) can be transformed
into J3(q). Hence many different inequivalent bases for quantum algebras exist. Their study
is of interest in q-special function theory. It is also relevant for any physical theory in which
a quantum group appears as a symmetry group, or as a dynamic group of some kind.

In this paper we construct one such nonstandard basis for the algebra suq(2) by
diagonalizing a specific operator, studied earlier in a different context by Ballesteros and
Chumakov [11]. In section 2 we assemble known facts about overlap functions for su(2)
representations, stressing the features to be extended to the case of the quantum algebra
suq(2). In section 3 we derive an explicit expression for the eigenfunctions and the
corresponding eigenvalues of the operator [q1/4J+(q) + q−1/4J−(q)]qJ3(q)/2 in an arbitrary
irreducible representation of the algebra suq(2). The general form of the intertwining operator
AJ (q), which is a q-extension of the classical su(2)-operator aJ , J1a

J = aJ J3, is also found.
The matrix elements of AJ (q) are expressed in terms of the dual q-Kravchuk polynomials.
The concluding section 4 indicates some further research directions of interest. Finally,
the appendix contains those properties of the Kravchuk and q-Kravchuk polynomials which
provide the background for our discussion. We shall assume throughout the paper that the
deformation parameter q belongs to the interval (0, 1), although there seems to be no difficulty
in extending our results to the case when 0 < |q| < 1 (see in this connection [12]).
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2. Overlap functions for su(2) representations

The commutation relations for the Hermitian generators J1, J2 and J3 of the su(2) algebra are

[J1, J2] = iJ3 [J2, J3] = iJ1 [J3, J1] = iJ2. (2.1)

It is well known [5] that for any irreducible representation with J = 0, 1
2 , 1, 3

2 , . . . , the
generators J3 and J± = J1 ± iJ2 define an orthogonal basis consisting of the normalized
eigenvectors of J3 by the equations

J3f
J
m = mf J

m J±f J
m = [(J ±m + 1)(J ∓m)]1/2f J

m±1. (2.2)

The raising J+ and lowering J− operators satisfy the commutation relations

[J+(x), J−(x)] = 2J3(x) [J3(x), J±(x)] = ±J±(x) (2.3)

which follow from (2.1).
If one uses the similarity transform

eiαABe−iαA = B +
∞∑
n=1

(iα)n

n!
[A, . . . , [A, [A,B]]]︸ ︷︷ ︸

n-fold

(2.4)

with A = J2 and B = J1, then from the commutation relations (2.1) it follows that

eiαJ2J1e−iαJ2 = cosαJ1 + sin αJ3. (2.5)

When α = π/2, (2.5) reduces to

eπ iJ2/2J1e−π iJ2/2 = J3. (2.5′)

Later on we shall need (2.5′), written in the intertwining form

J1e−π iJ2/2 = e−π iJ2/2J3. (2.5′′)

In the basis consisting of the eigenfunctions f J
m ,−J � m � J , the generator J3 is diagonal.

The relation (2.5′′) defines the basis f̃ J
m , in which the generator J1 is diagonal. Indeed, since

J1e−π iJ2/2f J
m = e−π iJ2/2J3f

J
m = me−π iJ2/2f J

m (2.6)

it becomes evident that

f̃ J
m = e−π iJ2/2f J

m . (2.6′)

It is clear that the operator exp(−π iJ2/2) is not the only one that relatesJ1 toJ3 (see (2.5′′)).
Indeed, if some operator B intertwines operators A and C, i.e. AB = BC, then any other
operator of the formf1(A)Bf2(C), wheref1 andf2 are arbitrary analytic functions, will possess
the same property. For instance, two more operators, satisfying the same relation (2.5′′), are
obtained in the following way. From (2.3) and the similarity transform (2.4) with A = J± and
B = J3 it follows that

eiαJ±J3e−iαJ± = J3 ∓ iαJ± (2.7)

respectively. Similarly, it is easy to show that

eiαJ±J∓e−iαJ± = J∓ ± 2iαJ3 + α2J±. (2.8)

Now, if one uses the first relation from (2.7) with α = i/2 and then the second one from (2.8)
with α = −i, this yields

J1eJ−e−J+/2 = eJ−e−J+/2J3. (2.9)

In a like manner, from the second relation in (2.7) with α = −i/2 and the first one from (2.8)
with α = i it follows that

J1e−J+ eJ−/2 = e−J+ eJ−/2J3. (2.10)
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It is not hard to find the general form of the operator aJ (for each irreducible representation
of su(2), characterized by some integer or half-integer number J ), satisfying the relation

J1a
J = aJ J3. (2.11)

Matrix elements of the operators J3 and J± in the canonical basis (2.2) are

(J3)m,m′ = mδm,m′ (J±)m,m′ = [(J ±m)(J ∓m + 1)]1/2δm,m′±1. (2.12)

Taking into account that J1 = (J+ + J−)/2, and using (2.12), leads to the following matrix
form of equation (2.11):√
(J + m + 1)(J −m)aJm+1,m′ +

√
(J −m + 1)(J + m)aJm−1,m′ = 2m′aJm,m′ . (2.13)

To dispense with the square roots in (2.13), substitute

aJm,m′ =
[

2J
J + m

]1/2

bJm,m′ (2.14)

where

[
n

k

]
are the binomial coefficients,

[
n

k

]
:= n!

k!(n− k)!
= k + 1

n− k

[
n

k + 1

]
= n− k + 1

k

[
n

k − 1

]
. (2.15)

This results in the simple recurrence relation

(J −m)bJm+1,m′ + (J + m)bJm−1,m′ = 2m′bJm,m′ (2.13′)

for the matrix elements bJm,m′ , which is a particular case of the recurrence relation for the
Kravchuk polynomials Kn(x;p,N) with the parameter p = 1

2 (see (A.2)). Consequently,

bJm,m′ = χJ (m′)KJ+m(J −m′; 1
2 , 2J ) (2.16)

where χJ (m′) is some arbitrary function of m′. Substituting (2.16) into the right-hand side
of (2.14) gives

aJm,m′ = χJ (m′)
[

2J
J + m

]1/2

KJ+m(J −m′; 1
2 , 2J ). (2.17)

Since K0(x;p,N) = 1 by the initial condition, one can also represent (2.17) as

aJm,m′ = aJ−J,m′

[
2J

J + m

]1/2

KJ+m(J −m′; 1
2 , 2J ). (2.17′)

Observe that in the particular case when aJ = exp(−π iJ2/2) (cf (2.5′′) and (2.6′)), the
matrix elements aJm,m′ coincide with Wigner’s d-function (see, for example, [8]):

dJm,m′

(π
2

)
= 1

2J

[
2J

J + m

]1/2 [
2J

J + m′

]1/2

KJ+m

(
J −m′; 1

2
, 2J

)
. (2.18)

In what follows we shall consider a particular realization for the generators J3, J± and,
consequently, for the eigenfunctions f J

m . If one defines (cf [13, p 278]),

J+(x) = x

(
2J − x

d

dx

)
J−(x) = d

dx
J3(x) = x

d

dx
− J (2.19)

then it is easy to verify that J±(x) and J3(x) satisfy the commutation relations (2.3). The
eigenfunctions of the operator J3(x) are monomials

f J
m (x) = cJmx

J+m cJm =
[

2J
J + m

]1/2

. (2.20)
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One can easily check that the basis f J
m (x) is canonical, i.e. equations (2.2) are satisfied.

For the realization (2.19) the eigenfunctions of the generator J1(x) = 1
2 [J+(x)+J−(x)] =

Jx + 1
2 (1 − x2) d

dx have the form

ϕJm(x) := (1 + x)J+m(1 − x)J−m = ϕJ−m(−x). (2.21)

In agreement with (2.4), the eigenvalues of J1(x) are the same as of J3(x), i.e.

J1(x)ϕ
J
m(x) = mϕJm(x). (2.22)

To expand ϕJm(x) in terms of f J
m (x) one can use a generating function for the Kravchuk

polynomials Kn(x;p,N) (see (A.5′)). Taking into account the normalization constant cJm
in (2.20), the relation (A.5′) is equivalent to the expansion

ϕJm(x) =
J∑

m′=−J
αJm′,mf

J
m′(x) (2.23)

where the connection coefficients αJm′,m are equal to

αJm′,m =
[

2J
J + m′

]1/2

KJ+m′(J −m; 1
2 , 2J ). (2.24)

If one compares (2.24) with (2.17′), then it becomes evident that the connection coefficients
αJm,m′ are the particular case of the matrix elements aJm,m′ of the intertwining operator (2.11)
with aJ−J,m′ = 1,−J � m′ � J .

3. Representations of the suq(2) algebra in a nonstandard basis

The commutation relations in this case are [1, 2]

[J1(q), J2(q)] = i

2
[2J3(q)]q [J2(q), J3(q)] = iJ1(q) [J3(q), J1(q)] = iJ2(q)

(3.1)

where

[A]q := qA/2 − q−A/2

q1/2 − q−1/2
. (3.2)

In terms of the raising J+(q) = J1(q) + iJ2(q) and lowering J−(q) = J1(q) − iJ2(q)

operators, (3.1) take the form

[J+(q), J−(q)] = [2J3(q)]q [J3(q), J±(q)] = ±J±(q). (3.3)

The canonical basis in each irreducible representation of the algebra suq(2), characterized by
some integer or half-integer number J , is defined as [3]

J3(q)f
J
m (q) = mf J

m(q) J±(q)f J
m (q) = [J ±m + 1]1/2

q [J ∓m]1/2
q f J

m±1(q). (3.4)

As is shown in [11], one can also diagonalize the operator

J̃1(q) := 1
2q

J3(q)/4[J+(q) + J−(q)]qJ3(q)/4 = 1
2 {q1/4J+(q) + q−1/4J−(q)}qJ3(q)/2. (3.5)

Below we give an analytic proof of this fact by finding eigenfunctions and eigenvalues of the
operator J̃1(q). But we begin this section with a derivation of the explicit form of the operator
AJ (q), that intertwines J̃1(q) and [2J3(q)]q/2. The operator AJ (q) is thus defined by the
relation

2J̃1(q)A
J (q) = AJ (q)[2J3(q)]q (3.6)
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and in the limit as q → 1− it coincides with aJ in (2.11).
Matrix elements of the operators J3(q) and J±(q) in the canonical basis (3.4) are

(J3(q))m,m′ = mδm,m′ (J±(q))m,m′ = [J ±m]1/2
q [J ∓m + 1]1/2

q δm,m′±1. (3.7)

Employing (3.5) and (3.7) yields the following matrix form of equation (3.6):

q(2m+1)/4[J + m + 1]1/2
q [J −m]1/2

q AJ
m+1,m′(q)

+q(2m−1)/4[J −m + 1]1/2
q [J + m]1/2

q AJ
m−1,m′(q)

= [2m′]qAJ
m,m′(q). (3.8)

To simplify (3.8), substitute

AJ
m,m′(q) = q(m

2−J 2)/4+m(2J−1)/4

[
2J

J + m

]1/2

q

BJ
m,m′(q) (3.9)

where

[
m

n

]
q

is the q-binomial coefficient,

[
m

n

]
q

:= (q; q)m
(q; q)n(q; q)m−n

= qn(m−n)/2 [m]q!

[n]q![m− n]q!
(3.10)

[m]q! = ∏m
j=1[j ]q and the q-shifted factorial is defined as (z; q)0 = 1 and (z; q)n =∏n−1

j=0(1 − zqj ), n = 1, 2, 3, . . . (we employ the standard notations of q-analysis, see [14],
or [15]). This results in a recurrence relation with respect to the index m:

(1 − qm−J )BJ
m+1,m′(q)− q−2J (1 − qJ+m)BJ

m−1,m′(q) = q−J (qm
′ − q−m′

)BJ
m,m′(q) (3.11)

which is a particular case of the three-term recurrence relation for the dual q-Kravchuk
polynomials Kn(x(s); c,N |q) with the parameters n = J + m, s = J − m′, and N = 2J .
Consequently,

AJ
m,m′(q) = q(m

2−J 2)/4+m(2J−1)/4

[
2J

J + m

]1/2

q

KJ+m(x(J −m′); −1, 2J |q)χJ (m′|q)

(3.12)

where x(J −m′) = q−J (qm
′ −q−m′

) and χJ (m′|q) is some arbitrary function of the indexm′.
Since K0(x(s); c,N |q) = 1 by the initial condition, it is more convenient to represent (3.12)
as

AJ
m,m′(q) = q(J+m)(J+m−1)/4

[
2J

J + m

]1/2

q

KJ+m(x(J −m′); −1, 2J |q)AJ
−J,m′(q). (3.12′)

As in the case of the su(2) algebra, matrix AJ
m,m′(q) depends on the 2J + 1 parameters

AJ
−J,m′(q),−J � m′ � J , and has the same structure as matrix aJm,m′ in (2.17′). In the

limit as q → 1−, AJ
m,m′(q) coincides with aJm,m′ . Notice also that one can express the matrix

elements AJ
m,m′(q) in terms of the q-Kravchuk polynomials KJ−m′(q−(J+m); q−2J , 2J ; q) on

the q-linear lattice q−s as well (see (A.6) and (A.11)).
The next problem is to find the explicit form of eigenfunctions and eigenvalues of the

operator J̃1(q). To do so we employ the particular realization (cf [16])

J+(x; q) = x

[
2J − x

d

dx

]
q

= x[J − J3(x)]q

J−(x; q) = 1

x

[
x

d

dx

]
q

= 1

x
[J + J3(x)]q

J3(x; q) = x
d

dx
− J = J3(x)

(3.13)
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for the suq(2) algebra. It is easy to verify that (3.13) satisfy the commutation relations (3.3);
moreover, the canonical basis in this case also consists of monomials in x, i.e.

f J
m (x; q) = cJm(q)x

J+m cJm(q) = q(m
2−J 2)/4

[
2J

J + m

]1/2

q

. (3.14)

By analogy with the classical case of the su(2) algebra, let us look for eigenfunctions of
J̃1(x; q) of the form

ϕJm(x; q) = (ax; q)J−m(−bx; q)J+m (3.15)

where a and b do not depend on x, but may be q dependent. Since

qcx
d

dx f (x) = f (qcx) c ∈ R (3.16)

we have

qJ3(x)/2ϕJm(x; q) = q−J/2q
1
2 x

d
dx ϕJm(x; q) = q−J/2ϕJm(q

1/2x; q). (3.17)

By using (3.16), one can now evaluate

J+(x; q)qJ3(x)/2ϕJm(x; q) = q−J/2J+(x; q)ϕJm(q1/2x; q)

= q−J/2x

q1/2 − q−1/2
[qJ− 1

2 x
d

dx − q
1
2 x

d
dx −J ]ϕJm(q

1/2x; q)

= q−J/2x

q1/2 − q−1/2
[qJϕJm(x; q)− q−J ϕJm(qx; q)]. (3.18)

In a like manner,

J−(x; q)qJ3(x)/2ϕJm(x; q) = q−J/2J−(x; q)ϕJm(q1/2x; q)

= q−J/2

x(q1/2 − q−1/2)
[ϕJm(qx; q)− ϕJm(x; q)]. (3.19)

Since

(qz; q)n = 1 − zqn

1 − z
(z; q)n

by the definition of the symbol (z; q)n, we have

ϕJm(qx; q) = (1 − axqJ−m)(1 + bxqJ+m)

(1 − ax)(1 + bx)
ϕJm(x; q). (3.20)

In accordance with (3.5), multiply (3.18) by q1/4 and (3.19) by q−1/4 and then sum them up.
After that it becomes clear that ϕJm(x; q) will be eigenfunctions of the operator J̃1(x; q) with
eigenvalues [2m]q/2 provided that a = b = q1/4−J/2. We have thus obtained that

J̃1(x; q)ϕJm(x; q) = [2m]q
2

ϕJm(x; q) (3.21a)

ϕJm(x; q) := (q1/4−J/2x; q)J−m(−q1/4−J/2x; q)J+m = ϕJ−m(−x; q). (3.21b)

Clearly, the ϕJm(x; q) are also eigenfunctions of the invariant (i.e. commuting with
J+(q), J−(q), and J3(q)) Casimir operator

C(q) := J+(q)J−(q) + [J3(q)− 1
2 ]2
q − 1

4 (3.22)

of the suq(2) algebra, with the eigenvalues [J + 1
2 ]2
q − 1

4 .
To expand ϕJm(x; q) in terms of the eigenfunctions f J

m (x; q) of the operator J3(x; q),
one can employ the generating function for the dual q-Kravchuk polynomials (A.14). But
we remark first that in the two ‘extremal’ cases when m = ±J , the functions ϕJm(x; q) have
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simpler forms (for when m = J the first factor in the definition of ϕJm(x; q) is equal to unity,
whereas when m = −J , the second factor becomes unity):

ϕJJ (x; q) = (−q1/4−J/2x; q)2J = ϕJ−J (−x; q). (3.23)

Therefore in these two cases the relation between ϕJm(x; q) and f J
m (x; q) is straightforward.

Indeed, with the aid of the identity

(z; q)n =
n∑

k=0

qk(k−1)/2

[
n

k

]
q

(−z)k (3.24)

one can expand ϕJJ (x; q) in powers of x, i.e.

ϕJJ (x; q) =
2J∑
k=0

qk(k−J−1/2)/2

[
2J
k

]
q

xk. (3.25)

Taking into account the explicit form of the normalization constant cJm(q) in (3.14),
relation (3.25) is equivalent to the following expansion:

ϕJJ (x; q) =
J∑

m=−J
q(J+m)(J+m−1)/4

[
2J

J + m

]1/2

q

f J
m (x; q). (3.26)

Later on we shall use (3.23) and (3.26) for a consistency check of expansions in the general
case of arbitrary values of m ∈ {−J,−J + 1, . . . , J }.

Now substituting k = J −m,N = 2J, t = −q3J/2−1/4x and c = −1 into the generating
function (A.14) for the dual q-Kravchuk polynomials and employing the relation

(q−m; q)n
(q; q)n = (−1)nqn(n−1)/2−mn

[
m

n

]
q

(3.27)

results in the following expansion:

(q1/4−J/2x; q)J−m(−q1/4−J/2x; q)J+m

=
2J∑
n=0

qn(n−J−1/2)/2

[
2J
n

]
q

Kn(λ(J −m); −1, 2J |q)xn (3.28)

where λ(J −m) = q−J (qm−q−m). Taking into account the explicit form of the normalization
constant cJm(q) in (3.14), relation (3.28) is equivalent to the expansion

ϕJm(x; q) =
J∑

m′=−J
αJm′,m(q)f

J
m′(x; q) (3.29)

where the connection coefficients αJm′,m(q) are equal to

αJm′,m(q) = q(J+m′)(J+m′−1)/4

[
2J

J + m′

]1/2

q

KJ+m′(λ(J −m); −1, 2J |q). (3.30)

As in the classical case, the connection coefficientsαJm,m′(q) are the particular case of the matrix
elements AJ

m,m′(q) of the intertwining operator (3.6) with AJ
−J,m′(q) = 1,−J � m′ � J .

4. Concluding remarks

In section 3 we have explicitly constructed a ‘nonstandard’ basis for representations of the
quantum algebra suq(2). The basis functions (3.21b) are common eigenfunctions of two
difference operators: the Casimir operator (3.22) and the operator J̃1(q) of equation (3.5).
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The relation between the standard and nonstandard basis functions is given by equation (3.29)
and involves the dual q-Kravchuk polynomials. Both sets of basis functions are eigenfunctions
of the Casimir operator. However, the additional operator, that actually determines the basis,
is a differential operator J3(x; q) = J3(x) (see (3.13)) for the standard basis, but a difference
operator J̃1(q) for the nonstandard one. Thus overlap functions provide relations between
solutions of differential and difference equations.

The representations were realized in a space of functions of one variable. It would be
of interest to consider other realizations, for instance, functions on a two-dimensional sphere,
as in [4]. An interesting question is whether the nonstandard basis corresponds to some type
of separable coordinates, or whether the basis functions will be genuinely functions of two
variables.

A more general question is that of bases for representations of higher-dimensional quantum
algebras. They may have Lie subalgebras that can be realized by differential operators
and complementary subspaces, realized by difference operators. This raises the possibility
of having both standard bases, corresponding to subgroup chains, and nonstandard ones,
corresponding to the diagonalization of commuting sets of difference operators.
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Appendix

1. The classical case. The Kravchuk polynomials are defined [17] as

Kn(x;p,N) := 2F1(−n,−x; −N; 1/p) 0 < p < 1 n = 0, 1, . . . , N (A.1)

where

2F1(−n, b; c; z) =
n∑

k=0

(−n)k(b)k
(c)k

zk

k!

is the terminating hypergeometric series of Gauss and (a)k = "(a + k)/"(a) is the shifted
factorial. These polynomials satisfy the three-term recurrence relation

p(N − n)Kn+1(x;p,N) + n(1 − p)Kn−1(x;p,N)
= [p(N − n) + n(1 − p)− x]Kn(x;p,N) (A.2)

with the initial conditionK0(x;p,N) = 1. As follows from the definition (A.1), the Kravchuk
polynomials are self-dual, i.e.

Kn(m;p,N) = Km(n;p,N) m, n ∈ {0, 1, . . . , N}. (A.3)

Euler’s transformation formula

2F1(a, b; c; z) = (1 − z)−b2F1

(
c − a, b; c; z

z− 1

)

for the Gauss hypergeometric series 2F1 yields another property of the Kravchuk polynomials

Kn(x;p,N) =
(
p − 1

p

)n
Kn(N − x; 1 − p,N). (A.4)
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The Kravchuk polynomials (A.1) have a generating function of the form(
1 − (1 − p)

p
t

)x
(1 + t)N−x =

N∑
n=0

[
N

n

]
Kn(x;p,N)tn. (A.5)

In the case when t = x, x = J −m,N = 2J and p = 1
2 , the generating function (A.5) is

(1 + x)J+m(1 − x)J−m =
2J∑
n=0

[
2J
n

]
Kn(J −m; 1

2 , 2J )xn. (A.5′)

2. The q-case. The q-Kravchuk polynomialsKn(q
−s;p,N; q) on the q-linear lattice x(s) =

q−s are defined in terms of the terminating basic hypergeometric series 2φ1(q
−n, b; c; q; z) [18]

as

Kn(q
−s;p,N; q) = (qs−N ; q)n

(q−N ; q)n q
−ns

2φ1(q
−n, q−s; qN−s−n+1; q; −pqn+N+1)

= (qs−N ; q)n
(q−N ; q)n q

−ns
n∑

k=0

(q−n; q)k(q−s; q)k
(qN−s−n+1; q)k(q; q)k (−pq

n+N+1)k (A.6)

where n = 0, 1, . . . , N . In the limit as q → 1−,

lim
q→1−

Kn(q
−s;p,N; q) = Kn

(
s; 1

p + 1
, N

)
. (A.7)

The dual q-Kravchuk polynomials Kn(x(s); c,N |q) on the q-quadratic lattice x(s) =
q−s + cqs−N are given by [19]

Kn(x(s); c,N |q) = (qs−N ; q)n
(q−N ; q)n q

−ns
2φ1(q

−n, q−s; qN−s−n+1; q; cqs+1). (A.8)

These polynomials satisfy a three-term recurrence relation

(1 − qn−N)Kn+1(x(s); c,N |q) + cq−N(1 − qn)Kn−1(x(s); c,N |q)
= [x(s)− (1 + c)qn−N ]Kn(x(s); c,N |q). (A.9)

In the limit as q → 1−,

lim
q→1−

Kn(x(s); 1 − 1/p,N |q) = Kn(s;p,N). (A.10)

For integer values of s = m = 0, 1, 2, . . . , N the dual q-Kravchuk polynomials (A.8) and the
q-Kravchuk polynomials (A.6) are related in the following way:

Kn(x(m); c,N |q) = Km(q
−n; −cq−N,N; q). (A.11)

This is a q-extension of the self-duality property (A.3) of the Kravchuk polynomials (A.1).
A q-extension of (A.4) is

Kn(x(N − s); c,N |q) = cnKn(x(s); c−1, N |q). (A.12)

This property of the dual q-Kravchuk polynomials Kn(x(s); c,N |q) follows from the
transformation formula (see [15, p 16]):

2φ1(q
−n, b; c; q; z) = q−n(n+1)/2 (b; q)n

(c; q)n (−z)
n

2φ1(q
−n, q1−n/c; q1−n/b; q; cqn+1/bz)

(A.13)

for the terminating basic hypergeometric series 2φ1.
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Finally, a q-extension of the expansion (A.5) is a generating function for the dual q-
Kravchuk polynomials (see [15, p 103]),

(q−Nt; q)N−k(cq−Nt; q)k =
N∑
n=0

(q−N ; q)n
(q; q)n Kn(x(k); c,N |q)tn (A.14)

where 0 � k � N and x(k) = q−k + cqk−N .
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